
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

On-the-Fly Autonomous Slot Allocation in
6TiSCH-Based Industrial IoT Networks

Alakesh Kalita , Member, IEEE, and Mohan Gurusamy , Senior Member, IEEE

Abstract—The IPv6 over time-slotted channel hopping
mode of IEEE 802.15.4e (6TiSCH) wireless protocol stack
is released to offer high-throughput, low and bounded
latency, energy efficient, and reliable communication in
industrial Internet of Things (IoT). However, scheduling
communication cell among the nodes for exchanging
sensory data is not trivial in 6TiSCH networks when the
network traffic is highly dynamic and unpredictable. The
existing autonomous scheduling schemes suffer from
static allocation, high end-to-end latency, and high energy
consumption. To address the abovementioned problems,
in this work, we propose on-the-fly autonomous slot
allocation (OASA) scheme to schedule slots for adaptive
traffic in 6TiSCH networks autonomously and immediately.
OASA also enables a low radio-duty-cycle of the nodes
when network traffic is less, which is not considered by any
existing adaptive autonomous schedulers. To validate the
effectiveness of OASA, we implemented it on Contiki-NG
and performed testbed experiments on FIT IoT-LAB. The
testbed experiment results demonstrate the effectiveness
of OASA in terms of latency, packet delivery ratio, and
energy consumption compared to the existing autonomous
scheduling schemes.

Index Terms—Autonomous scheduling, IEEE 802.15.4e,
IPv6 over the time-slotted channel hopping (TSCH) mode of
IEEE 802.15.4e (6TiSCH), Industrial Internet of Things (IIoT),
time-slotted channel hopping (TSCH).

I. INTRODUCTION

THE IPv6 over the time-slotted channel hopping (TSCH)
mode of IEEE 802.15.4e (6TiSCH) wireless network pro-

tocol enables wireless communication in Industrial Internet of
Things (IoT) (IIoT) and critical IoT applications [1]. 6TiSCH
networks are built on the top of IEEE 802.15.4e standard,
which is a low-power wireless communication standard that
introduced TSCH medium access control (MAC) mode to pro-
vide stringent requirements, such as high reliability, higher
throughput, delay-bounded, and energy-efficient communica-
tion in resource-constrained node-based IoT networks. Particu-
larly, 6TiSCH networks can be adopted in scenarios requiring

Manuscript received 8 January 2024; revised 11 March 2024; ac-
cepted 19 March 2024. Paper no. TII-24-0120. (Corresponding author:
Alakesh Kalita.)

The authors are with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 119077 (e-mail:
alakesh.kalita1025@gmail.com; gmohan@nus.edu.sg).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2024.3385117.

Digital Object Identifier 10.1109/TII.2024.3385117

Fig. 1. 6TiSCH IIoT network connected to the Internet.

low-power and highly reliable communication, making them
suitable for applications, such as industrial automation, smart
grids, and healthcare systems [2]. In brief, 6TiSCH networks
are a robust choice for time-sensitive and mission-critical ap-
plications. For example, in IIoT, as shown in Fig. 1, 6TiSCH
can be used to enable real-time monitoring and controlling of
industrial operations, such as assessing temperature, humidity,
and other environmental factors, where sensors are placed all
over a factory. The sensors attached to IoT nodes deliver real-
time data to the root node [aka border router (BR)] using the
routing protocol for low power and lossy network (RPL) [3] of
the 6TiSCH protocol stack. The BR can process such data by
itself or transmit it to the cloud using the Internet for further
processing.

To transmit a sensory data packet from a given node, i.e.,
either leaf or intermediate/relay node to the BR, the node must
schedule a unique “cell,” which is a combination of a times-
lot (aka slot) and a physical channel, with its’ preferred RPL
routing parent. However, the IEEE 802.15.4e standard does not
provide information about managing/scheduling (i.e., allocation

1551-3203 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0277-9671
https://orcid.org/0000-0001-6764-268X
mailto:alakesh.kalita1025@gmail.com
mailto:gmohan@nus.edu.sg
https://doi.org/10.1109/TII.2024.3385117

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

and deallocation) such data transmitting cells. Scheduling of
transmission cells is very challenging in dynamic IoT networks
because assigning more cells unnecessarily would increase the
energy consumption of the nodes by forcing them to activate
their radios in the assigned slots. On the other hand, fewer
assigned cells would severely degrade the network performance.
Therefore, a conflict- and collision-free, and appropriate cell
scheduling scheme is expected to improve the performance of
multihop 6TiSCH-based IIoT networks.

For scheduling cells in 6TiSCH networks, researchers used ei-
ther centralized [4], distributed [5], [6], or autonomous schedul-
ing approaches, such as Orchestra [7]. However, autonomous
scheduling has the advantage of zero control packet overhead in
the network, and so, can save nodes’ energy. Recently, several
autonomous schedulers have been proposed, such as Orches-
tra [7], autonomous link-based cell scheduling (ALICE) [8],
OST [9], and a cube (A3) [10]. However, both Orchestra and
ALICE suffer from static and limited allocation of transmis-
sion and reception slots. Hereafter, we denote the transmission
and reception slots by Tx and Rx slots, respectively. On the
other hand, even though OST and A3 provide adaptive slot
allocation, i.e., depending on networks’ slot requirement, they
suffer from high energy consumption when there is less traffic
in the network. In addition, OST and A3 allocate slots based
on traffic estimation, which is not immediate. Consequently,
it contributes to an increase in packet delivery latency. Atis
et al. [11] extensively studied some of the existing autonomous
scheduling methods using testbed experiments and suggested
to increase the number of Rx slots at the root node. However,
increasing Rx slots of the root node only help the immediate
neighbor nodes and, significant performance improvement of
the other nodes, i.e. two or more hop distance nodes cannot be
expected.

Therefore, to deal with the problems of existing autonomous
scheduling schemes, we propose the on-the-fly autonomous slot
allocation (OASA) scheme in this work. The proposed OASA is
highly adaptive to the network traffic compared to the existing
adaptive autonomous scheduling schemes, i.e., OST and A3. In
brief, OASA enables very low radio-duty-cycle (RDC) based
communication when traffic is very low. Still, it quickly adds
more slots during sudden and burst traffic transmission (e.g.,
when an event occurs). Using OASA, nodes do not need to
estimate traffic load before allocating slots, unlike A3 and OST.
In brief, allocation by OASA does not increase packet latency.
OASA autonomously allocates and schedules slots on-the-fly to
handle adaptive traffic in 6TiSCH networks. The main contribu-
tions of this work are as follows.

1) We propose OASA scheme to autonomously and imme-
diately allocate data-transmitting cells for adaptive traffic
within 6TiSCH networks.

2) Addressing a gap in existing adaptive autonomous sched-
ulers, OASA enhances the efficiency of nodes by enabling
a low-duty cycle when network traffic is minimal.

3) We implement OASA in the widely-used IoT operating
system, Contiki-NG [12] and perform testbed experi-
ments on open-source FIT IoT-LAB [13] to validate the
effectiveness of the proposed OASA.

Fig. 2. Scheduling of TSCH slots with slotframe size of 6.

The rest of this article is organized as follows. Section II
provides a brief overview of 6TiSCH network and discusses the
existing scheduling schemes for it. We briefly discuss the design
of our proposed scheme in Section IV, and provide comparison-
based testbed results in Section V. Finally, Section VI concludes
this article.

II. BACKGROUND AND RELATED WORK

In this section, we briefly discuss IEEE 802.15.4e TSCH and
existing scheduling schemes for 6TiSCH networks.

A. Overview of IEEE 802.15.4e TSCH

IEEE 802.15.4e TSCH MAC’s time-slotted channel ac-
cess feature provides guaranteed, bounded, deterministic, and
collision-free packet delivery. On the other hand, the channel
hopping feature helps in getting rid of interference and multi-
path fading issues on a single channel. To provide time-slotted
channel access, as illustrated in Fig. 2, the time is divided into
fixed-duration timeslots, which are long enough [usually, 10 ms
to transmit a packet and receive its acknowledgement (ACK)].
Several timeslots constitute one slotframe, which repeats one
after another.Slot Offset (x-axis of Fig. 2) is used to denote
the relative position of a timeslot within a slotframe. A pair of
nodes also need to decide on a channel to transmit a packet in
a given timeslot, and the combination of timeslot and channel
is called “cell.” The Channel Offset (y-axis of Fig. 2)
denotes the offset for channel selection. The sender and receiver
pairs need to schedule their cells efficiently for collision-free
communication. A well-designed scheduling scheme can effi-
ciently use the cells to achieve high network performance. For
exchanging data packets, in a given timeslot, both the sender
and receiver should be on the same physical channel. For such
physical channel selection, the following equation is used [1]:

channel = FHS [(ASN + channeloffset) mod Nc] . (1)

where channel is the channel index associated with a
dedicated frequency, absolute slot number (ASN) denotes the
number of timeslots elapsed from the starting of the network,
FHS is the frequency hopping sequence, Nc = ||FHS|| denotes
the number of physical channels used in the network and each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

KALITA AND GURUSAMY: ON-THE-FLY AUTONOMOUS SLOT ALLOCATION IN 6TISCH-BASED INDUSTRIAL IOT NETWORKS 3

channel identified by Channel Offset (y-axis of Fig. 2).
An entire 6TiSCH network uses the same ASN number, which
is broadcasted by the enhanced beacon (EB) control frame. As
the value of ASN increased by one after each timeslot, (1) gives
different values of channel for the same channel offset within
FHS, which enables the channel hopping feature of TSCH. For
example, let FHS of a TSCH network is 11, 19, 15, 13. Then,
the FHS of channel offset 0 will be 11, 19, 15, 13 that of channel
offset 1 will be 19, 15, 13, 11, and so on. In Fig. 2, we use
Nc = 16.

B. Related Works

In this section, we briefly discuss the existing scheduling
algorithms used in 6TiSCH network. In 6TiSCH network, cells
are scheduled by centralized, distributive, or autonomous ap-
proaches. However, the centralized and distributed schemes have
the issues of single node failure and control packet overhead,
respectively. Therefore, autonomous approaches gain more at-
tention from the researchers compared to the other two ap-
proaches. Traffic aware scheduling algorithm (TASA) [4] and
MODESSA [14] are two well-known centralized scheduling
schemes for the 6TiSCH network. TASA leverages the global
tree topology and nodes’ traffic load to minimize latency and
RDC. On the other hand, MODESSA emphasizes load balanc-
ing by distributing loads on different channels. However, both
schemes have severe control packet overhead and exhibit slow
scheduling. The work in [15] mentioned a centralized approach
to use SDN in 6TiSCH-based IoT networks, whereas the work
in [16] proposed a Layer-2 slicing scheme to reduce SDN control
traffic in TSCH network.

Distributed approaches utilize handshaking approaches, i.e.,
exchanging of control packets for several rounds for scheduling
cells between the sender and receiver. Decentralized traffic
aware scheduling (DeTAS) [17] is a distributed scheduling
approach based on TASA, where the parent nodes gather the
information about the traffic load of their child nodes and,
accordingly, schedule cells. On the fly (OTF) [6] allocates
cells based on previous transmission statistics and adjusts the
number of cells in use. In a decentralized slot reservation policy
(ASAP) [18], the authors analyzed 6TiSCH network during its
formation, considering the real-use cases of 6TiSCH networks
with varied numbers of nodes. ASAP adds two slots for each link,
i.e., for each parent and child pair by exchanging control packets.
Recently minimal scheduling function (MSF) standard [5] was
released for dynamically allocating data transmission cells in
6TiSCH networks. However, this standard uses a distributed
scheduling mechanism and has 6P control packet overhead.

To overcome the issues of centralized and distributed schedul-
ing, autonomous schedulers allow the nodes to apply hash
function either on its’ own ID (i.e., EUI64 or MAC address),
neighbor’s ID, or on both IDs to independently determine the
dedicated timeslots and channels for exchanging packets. To join
a 6TiSCH network, a new node should get an EB frame and a
DODAG information object (DIO) packet from one of the al-
ready joined nodes, which is considered as the parent of the new
node. From the headers of these control packets, the new node

Fig. 3. Slot scheduling by node #2 with existing schemes.

comes to know about the EUI64 address of the parent node.
On the other hand, when the new node transmits data packets or
other RPL’s control packets, such as destination advertisement
object (DAO) to the parent node, the parent node comes to know
about the EUI64 address of the new node. Thus, the parent and
the new node come to know about each other EUI64 addresses
and exchange packets. When network topology changes, the
autonomous scheduler of the nodes gets updated with the new
neighbor information from the same control packets.

Orchestra, the first autonomous scheduling scheme proposed
by Duquennoy et al. [7] provides two different modes of oper-
ation: receiver-based (Orch-RB) and sender-based (Orch-SB).
However, only one mode can be used in a network at a given time.
All the nodes assign a unicast cell for themselves using their ID,
which operates as anRx slot in Orch-RB andTx slot in Orch-SB.
On the other hand, the neighboring nodes consider such unicast
cells as Tx and Rx in Orch-RB and Orch-SB, respectively. So,
in Orch-SB, nodes transmit their packet by applying hashing
on their IDs, as shown in Fig. 3. The main disadvantage of
Orchestra scheduling is that Orch-RB faces high contention as
all neighboring nodes transmit in the same Rx slot. On the other
hand, Orch-SB suffers from queuing delay as a node can transmit
only one packet to its’ routing parent per slotframe. Furthermore,
both the modes of Orchestra use static (i.e., fixed) slot allocation,
which does not change with network slot requirements.

To address the limitations of Orchestra concerning the limited
and static number of slots allocation per slotframe, Kim et al.[8]
proposed ALICE in 2019. ALICE differs from the Orchestra in
several ways. ALICE employs link-based slot scheduling, i.e.,
two separate slots for each RPL parent and child pair (shown
in Fig. 3), unlike the node-based Orchestra, which schedules
only one slot per slotframe for such pair. It also uses link-based
Channel Offset, unlike a single Channel Offset as in
Orchestra. Another key difference in ALICE is that it regularly
reassigns/reallocates all the unicast cells by feeding the hash
function with a time-dependent input. However, ALICE also
suffers from the problem of limited slots allocation per slotframe
(i.e., one for uplink towards the root and one for downlink
toward the leaf) for the networks with high traffic loads, as
experimentally shown by the works OST [9] and A3 [10]. For
example, a parent node has two child nodes, and each of them
needs to transmit one packet per slotframe to the root. However,
as ALICE allows one uplink slot toward the root, the parent node
can send only one packet per slotframe, which is insufficient. It
requires three uplink slots per slotframe. The slot allocation by
ALICE is also static, which is two slots per slotframe. Again,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

nodes need to keep their radios active once in a slotframe for each
neighbor node irrespective of data transmission, which increases
energy consumption in low traffic-based networks. Recently, to
address the problem of insufficient slot allocation by Orchestra
and ALICE, two adaptive scheduling schemes, OST and A3
were proposed by the same authors Kim et al. [9] and [10]. In
OST, the nodes piggybacked their buffer occupancy information
with their link-layer frames, and based on that, the receiver nodes
estimate the traffic load from their neighbors and, subsequently,
allocate slots. However, allocating slots after getting the traffic
load information increases the packet latency as slot allocation
and packet transmission are not done immediately, i.e., on-the-
fly. Even though, in A3, nodes can estimate the traffic from
their neighbor nodes without knowing their buffer occupancy
information, unlike OST, it also has some disadvantages. A3 may
be unable to deal with sudden burst traffic as traffic estimation
and slot allocation take some time, which can result in packet
loss, increasing packet latency. Similarly, slot deallocation also
takes some time, which increases nodes’ energy consumption.
Most importantly, using OST and A3, nodes must keep their
radios active at least once per slotframe for each neighbor, like
ALICE, increasing the nodes’ energy consumption in low-traffic
networks.

The works in [19] and [20] autonomously allocate a shared
minimal cell for control packet transmission in 6TiSCH net-
works. The authors did not consider the transmission of data
traffic in their works. The work in [21] proposed a scheme
for mobile-TSCH networks that has control packet overhead.
On the other hand, the work in [22] dealt with the problem of
missing ACKs in TSCH networks but was limited to single-hop
networks. The work in [23] proposed the scheme Auto-Sched,
which presents a fully autonomous scheduling approach, en-
suring reliable uplink and downlink traffic scheduling while
providing network robustness against failures. By assigning
retransmission time slots based on link reliability and employing
pipeline-like communication schedules, the Auto-Sched mini-
mizes collisions. However, Auto-sched reserves some slots for
control packets, such as DAO which may create problems when
the slotframe length (SF) is small. In summary, even though
autonomous scheduling is better than distributed scheduling
algorithms, static autonomous scheduling algorithms, such as
Orchestra and ALICE suffer from insufficient bandwidth allo-
cation. On the other hand, OST and A3 can increase end-to-end
packet latency and energy consumption of the nodes because
of traffic estimation and longer convergence time of scheduling
decisions. Therefore, to address these problems, we propose an
adaptive scheduling technique for 6TiSCH networks that imme-
diately allocates slots based on traffic demands, i.e., on-the-fly.
In Table I, we summarize the existing works along with our
proposed work considering different parameters.

III. STUDY ON LIMITATIONS OF THE EXISTING SCHEMES

In this section, we investigate the Orchestra and A3 au-
tonomous scheduling schemes on FIT IoT-LAB using 60M3 IoT
nodes (MCU: ARM Cortex M3, 32-bits, 72 Mhz, 64 kB RAM,
radio communication: 802.15.4 PHY standard, 2.4 Ghz.), where

TABLE I
EXISTING SCHEDULING SCHEMES

Fig. 4. Experimental 6TiSCH network topology from Strasbourg’s.
(a) Physical topology. (b) Routing topology.

TABLE II
EXPERIMENTAL SETTINGS

all the leaf nodes and relay nodes generate and transmit packets
toward the root node. Therefore, the utilized network topology
can function as a sparse network under low traffic rates and
as a dense network under high traffic rates. Note that the core
mechanism of A3 is to estimate the traffic load, it can be used
with any autonomous scheduler, such as Orchestra and ALICE,
as an independent module. In our evaluation, we use A3 along
with ALICE. During our experiments, the nodes are organized
by RPL routing protocol as shown in Fig. 4. We used RPL storing
mode for routing and minimum rank with hysteresis objective
function (MRHOF) [26] with ETX for the objective function.
In our experiments, we assess the performance of each scheme
by comparing the end-to-end packet delivery ratio (PDR) and
RDC. The SF is varied from 7 to 101 timeslots. In addition, we
evaluate the packet acknowledgment ratio (PAR), queue losses,
and parent changes across different SFs. The other experimental
settings are listed in Table II. We consider standardized net-
work configurations/settings as well as Contiki-NG’s default
experimental configurations for our evaluation. We run each
experiment for 60 min, out of which in the initial 20 mins, we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

KALITA AND GURUSAMY: ON-THE-FLY AUTONOMOUS SLOT ALLOCATION IN 6TISCH-BASED INDUSTRIAL IOT NETWORKS 5

allow the nodes to join in the network, and in the rest of the
40 mins, we collect our data. In IIoT, plenty of nodes can be
attached with a single BR; therefore, considering such a dense
IIoT network, we evaluate Orchestra and A3 with high traffic
rate, i.e., 4 packets(pkt)/min toward the root node.

In our evaluation, the following metrics are used.
1) PDR: Ratio between the packets received by the BR and

transmitted by a sender. PDR of a sender is calculated at
the BR.

2) PAR: Ratio between layer-2 ACKs and transmitted pack-
ets. Each node calculates PAR by itself. Note that layer
2 ACK is sent by the receiver irrespective of its queue
capacity.

3) Queue Loss: Number of packets lost due to buffer over-
flow, calculated by the nodes themselves.

4) RDC: Percentage of the radio active time (i.e., Rx, Tx)
against total experimental time. High RDC denotes higher
energy consumption and vice versa.

5) Latency: Average time taken by the packets to reach root.
6) Parent Change: Number of times a node changes its

parent. It is calculated at the node itself. More parent
change denotes less stability in the network.

Our preliminary experimental results are shown using 95%
confidence interval in Fig. 5 by running each experiment at
least 25 times. In Fig. 5(a), we can see that the performance
of Orch-SB and Orch-RB modes in terms of PDR degrades
with the increasing value of SF due to insufficient provision-
ing of bandwidth, i.e., data transmission cells per slotframe
to handle such high traffic load, 4 pkt/min. Even though SB
mode provides better PDR using shorter SF, its performance
drastically degrades when SF is 101 slots. The results shown in
Fig. 5(b) denote that only a few packets were lost due to external
interference or packet collision. As the nodes do not get enough
slots to transmit their packets and the packets received from their
child nodes when SF length is more, nodes keep the packets in
their buffer for a longer time. Later, this results in discarding
new incoming packets when the buffer becomes full, leading to
more queue losses, as shown in Fig. 5(c). Note that both SB and
RB show comparatively better results with short SF. However,
the adverse effect of having short SF can be seen in Fig. 5(d).
When the network uses short SF, nodes frequently allocate Rx
and Tx, so the RDC of nodes increases, leading to more energy
consumption. So, short SF is not desirable in 6TiSCH networks.

Furthermore, when using Orchestra, nodes need to retain data
packets for longer due to limited slot allocation, increasing
packet delivery latency for the nodes, as shown in Fig. 5(e).
In addition, insufficient allocation of slots per slotframe forces
the nodes to change their parent very frequently, as shown in
Fig. 5(f), which creates unstable networks [10].

From these different results, we can claim that Orchestra
does not provide sufficient slots per slotframe to transmit high
traffic. As slot allocation by ALICE is also static and uses one
slot per slotframe for each direction of a link, using ALICE,
similar results can be expected as Orch-SB. Even though A3 can
adaptively provide sufficient slots per slotframe for transmitting

Fig. 5. Testbed experimental results of some existing autonomous
schemes using application data rate 4 pkt/min. (a) PDR. (b) Packet
ACK ratio. (c) Queue losses. (d) RDC. (e) End-to-end packet latency.
(f) Number of parent changes.

such massive network traffic, it takes time to estimate the traffic
load in the network. Because of the convergence of traffic
estimation, both packet latency and energy consumption of the
nodes increased. These experimental results from the testbed for
existing autonomous schemes motivate us to design an adaptive
and autonomous scheme that can dynamically allocate slots
within a given slotframe based on the slot requirements of a
6TiSCH network. In addition, it should also maintain a low
RDC for the nodes when network traffic is low. In the following
sections, we briefly discuss our proposed approach.

IV. PROPOSED APPROACH

In 6TiSCH networks, nodes change their physical transmis-
sion channels after each transmission. Therefore, apart from
scheduling the packet in the same timeslot, it is important for
both the transmitter and receiver to be active on the same chan-
nel. Considering this synchronization requirement, we briefly
discuss our proposed autonomous and adaptive on-the-fly slot
scheduling scheme in the following section.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 6. Working of proposed OASA.

A. On-the-Fly Autonomous Slot Allocation

Our proposed OASA uses the node’s unique EUI64 ad-
dress to independently and autonomously schedule cells like
other autonomous schedulers, such as A3 and OST. Note that
OASA works with other unique layer 2 address, such as MAC.
Furthermore, using OASA, each node maintains a dedicated
broadcast slot and a shared common slot for transmitting EB and
RPL control packets, respectively, like the exiting autonomous
schemes. However, for transmitting data packets, OASA works
differently as discussed in the next paragraph. Fig. 6 illustrates
the procedural steps employed by a sender–receiver pair in the
implementation of our proposed scheme OASA. The ensuing
paragraphs provide a detailed discussion of each step.

Upward traffic: It denotes the traffic from the sensor-attached
IoT nodes to the root node of 6TiSCH networks. The root node
later transmits the collected traffic to the cloud for analysis.
For example, periodic data transmission by home monitoring
system. For such upward traffic, each node maintains two types
of unicast slots using OASA. The first slot is the shared Rx
slot (hereafter referred to as 1© base-Rx slot), which is used to
receive packets from any child node like RB-Orch. The timeslot
(Tb) and the channel (Cb) for the base-Rx cell of a receiver
node are determined by applying hash-ing to the receiver’s (R)
EUI64 address and then taking the modulo of the unicast SF,

as follows:

Tb = mod(hash(EUI64(R) + ASFN), SF)

Cb = mod(hash(EUI64(R) + ASFN), Nc − 1) + 1

here, ASFN denotes absolute slotframe number (calculated as
�ASN/SF� to reduce repeated collisions as in ALICE [8], and
Nc denotes the number of channels used in the network. We
use a simple 32-bit integer mix function for hashing as used by
ALICE [8]. Note that both sender and receiver should use the
same methods to calculate the Tb and Cb, but they would be
in opposite radio states, i.e., the base-Rx slot of the receiver
should be the base-Tx slot for the sender. Otherwise, nodes
will face radio-conflict. The other type of slot is 2© adaptive
unicast slot, which is used to transmit more than one packet in
a slotframe. A sender–receiver pair allocates multiple adaptive
unicast slots within a slotframe depending on the number of
outstanding packets in the sender buffer (briefly discussed in the
next two paragraphs). The first (i = 0) adaptive unicast cells’s
timeslot T<a,i=0> and channel C<a,i=0> are calculated using
both the sender (S) and receiver (R)EUI64 addresses as follows.

T<a,i=0> = mod (α hash(EUI64(R)

+ EUI64(S) + SHIFT[i] + ASFN), SF),

C<a,i=0> = mod (α hash(EUI64(R)

+EUI64(S) + SHIFT[i]+ASFN), Nc − 1) + 1.

A SHIFT-array and α (both are discussed later) are used to
allocate successive adaptive unicast slots and differentiate the
traffic directions, respectively. Note that if any of the calculated
timeslot, T<a,i> for adaptive unicast slots conflict with base-
Rx slot of the parent, then next timeslot is used, i.e., T<a,i> =
T<a,i> + 1. The sender and receiver use these slots as follows.

Sender: When a child node wants to transmit more than one
packet to its RPL parent (i.e., upward traffic toward the root) in
a slotframe, it tries to transmit its first packet on the base-Rx slot
of the parent as the adaptive unicast slots are not allocated yet.
As the base-Rx slot is shared, all the child nodes (senders) at-
tempt to transmit their first packet following the standard TSCH
backoff approach. When the sender successfully transmits
its first packet and receives ACK, it allocates adaptive unicast
Tx slot(s) using the SHIFT[MAX] array to transmit subsequent
packets as follows.

The SHIFT-array is used to shift the adaptive slots from the
first adaptive slot within the current slotframe. The values of
SHIFT-array can be obtained as follows:

SHIFT[i] = i ∗
⌊

SF
MAX

⌋
, i = 0, 1, . . . ,MAX − 1.

For instance, consider a scenario where the SF consists of
101 timeslots, and the given value of MAX is 4. In this case, an
additional three adaptive slots would be added, starting from the
first adaptive unicast cell T<a,i=0> and C<a,i=0>, with each of
these new slots positioned at intervals of [25, 50, 75] slots apart.
However, all the adaptive unicast cells are calculated and sorted

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

KALITA AND GURUSAMY: ON-THE-FLY AUTONOMOUS SLOT ALLOCATION IN 6TISCH-BASED INDUSTRIAL IOT NETWORKS 7

Algorithm 1: OASA-Sender.
1: INPUT: Outgoing packet, SHIFT=[], flag = 0, MAX
2: OUTPUT: Schedule transmission Tx slot(s)
3: if new slotframe starts then
4: Initialize i = 0
5: end if
6: if flag is not set then
7: Schedule and transmit in base-Tx slot using parent

EUI64 address
8: Set the flag when transmission is success
9: end if

10: if buffer is not empty AND flag is set AND i is less
than MAXthen

11: Sort and schedule adaptive Tx slot with SHIFT[i]
12: Increase i by unity
13: end if
14: if buffer is empty then
15: Unset the flag
16: end if
17: if not received ACK in scheduled adaptive Tx slot then
18: Re-transmit in the next adaptive Tx slot
19: end if

based on the relative position of the associated timeslots, T<a,i>

from the beginning of a slotframe and scheduled accordingly.
Using many adaptive unicast slots within a slotframe would

increase the RDC of the parent node. Therefore, we use MAX
threshold to restrict the used number of slots per slotframe. The
value of MAX threshold can be broadcasted in the information
element (IE) of an EB frame. Therefore, SHIFT[MAX] can be
autonomously calculated by the nodes (i.e., sender and receiver)
by themselves as the same and known value of SF is used in the
network. To reduce contention in the base-Rx slot, we impose
a restriction preventing a node from transmitting a packet in
the base-Rx slot of the subsequent slotframes, if the node has
already installed adaptive Tx slot(s). As different parent-child
pairs transmit their subsequent packets using different adaptive
slots based on their EUI64 addresses, there will be no collisions
in such allocated autonomous slots (assuming there is no hashing
conflict and mitigating hashing conflict out of the scope of this
article). Algorithm 1 and Fig. 6 show the steps of a sender to
transmit its packet using OASA.

Receiver: When a node receives a packet in its base-Rx
slot, it immediately schedules an adaptive unicast slot for the
corresponding sender. If the node receives one more packet in
the allocated adaptive unicast slot, it allocates one more adaptive
unicast slot, and it continues till MAX is reached. Note that the
receiver always allocates an adaptive slot when it receives a
packet from the sender, and the sender may not have a packet to
transmit in that allocated adaptive slot. When the receiver does
not receive any frame in any of the allocated adaptive slots, it
removes all the subsequent allocated adaptive slots, considering
the sender does not have packets to transmit. The receiver needs
to unnecessarily listen in the allocated adaptive slot in such
events. However, energy consumption by the receiver for such

Algorithm 2: OASA-Receiver.
1: INPUT: SHIFT=[], i = 0,
2: OUTPUT: Schedule Rx slot(s) for sender k
3: if new slotframe starts then
4: Initialize i = 0
5: end if
6: if received a packet in base-Rx slot then
7: Remove already allocated adaptive Rx slot(s)
8: Allocate new adaptive Rx slot with SHIFT[i]
9: end if

10: if received a packet in Ck-based adaptive Rx slot AND i
is less than MAX then

11: Sort and schedule adaptive Rx slot(s) with SHIFT[i]
12: end if
13: Increase i by unity
14: if not receive packet in current adaptive Rx slot then
15: Remove all the scheduled adaptive Rx slots for k
16: end if

idle-listening (i.e., 128 μS) is much less compared to energy
consumption for packet reception and retransmission. Note that
there could be a situation in which a receiver sends an ACK, but
the sender does not receive it. In such a case, the sender tries to
retransmit the packet on the next adaptive unicast slot. Receivers
also need to sort the adaptive unicast cells before scheduling like
the senders. Algorithm 2 and Fig. 6 show the steps of a receiver
to receive packets from the sender k using OASA. Note that a
node uses either Algorithm 1 or Algorithm 2 at a given timeslot
as it can be either sender or receiver.

Downward Traffic: It denotes the command or query from
the cloud or root node to the actuator or sensor-attached IoT
nodes. For example, getting the value of the temperature sensor
or switching OFF the electric motor. For such downward traffic,
i.e., query from RPL root (BR) to leaf, OASA can be used
efficiently, where RPL parent nodes behave as the senders, and
the child nodes behave as the receivers. Note that because of the
usage of the coefficient “α” for calculating T<a,i> and C<a,i>,
different adaptive cells will be allocated for downward traffic.
In brief, coefficient “α” distinguishes traffic direction.

Advantages over OST and A3: Some of the advantages of
OASA over OST and A3 as follows.

1) Allocation is done on-the-fly, unlike OST and A3, which
allocate after collecting and estimating traffic load, re-
spectively. This helps in reducing packet latency.

2) In OST and A3, Rx and Tx-slots are allocated in every
slotframe for each directional link irrespective of traffic
load, which increases RDC. For example, if a node has
three child nodes, the node allocates three Rx-slots in
every slotframe in both OST and A3. However, in OASA,
the node would allocate only one base-Rx-slot. So, OASA
has the advantage over OST and A3 in terms of RDC
even though, by default, it assigns one adaptive cell upon
receiving a packet on base-Rx slot.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 7. Example of OASA-based scheduling. Different packets are
denoted by different colors and sequence numbers.

3) Implementation of OASA uses only a few flag variables.
In contrast, traffic estimation in A3 requires some com-
putation, and OST incurs packet overhead.

B. Working Example of OASA

In Fig. 7, we illustrate the scheduling of slots for nodes #3
and #4 toward node #2 across two slotframes using OASA. For
this, we assume the values for MAX, ASFN, and SFsize as 4,
0, and 7, respectively, and we use only one channel for packet
transmission. Initially, nodes #3 and #4 both attempt to transmit
their first packet during the base-Rx slot of node #2 (i.e., slot
2). Assuming node #4 successfully transmits its first packet,
nodes #4 and #2 schedule their next adaptive slot at slot
6, i.e., (id(2) + id(4) + SHIFT[i] + ASFN)%SF = 6, where
i = 0, SHIFT[i] = 0. Subsequently, both nodes schedule sorted
slots in the next slotframe (so, ASFN = 1) using the SHIFT val-
ues 0 and 1, respectively, at slot 0 (i.e., id(2) + id(4) + 0 +
1)%7 = 0) and slot 1 (i.e., id(2) + id(4) + 1 + 1)%7 = 1).
As node #3 can transmit its first packet during base-Rx slot of
node #2, nodes #3 and #2 coordinate to schedule their adaptive
slot at slot 5. Thus, OASA autonomously allocates slots in
real time.

V. EXPERIMENTAL RESULTS

We implement OASA on Contiki-NG and perform testbed
experiments on FIT IoT-LAB using the same network configu-
rations as discussed in Section III. The testbed results are shown
in Fig. 8. We compare our proposed OASA with Orch-SB, OST,
and A3. For fair evaluation, we consider the same value for
number of zones in A3 and MAX-threshold of OASA, which is
4. Note that the number of zones and MAX denote the maxi-
mum number of Rx/Tx slots per slotframe. The other existing
autonomous schemes, such as [19], [20], [25], primarily focus
on control packet transmission. Consequently, we omit com-
parison of these schemes with OASA, as the latter specifically
addresses data packet transmission, aligning more closely with
methodologies like Orchestra, OST, and A3. As Orch-SB uses
only one Rx/Tx slots per slotframe, therefore, the performance
of Orch-SB is significantly poor compared to OST, A3, and
OASA when the used SF is more, i.e., 67 and 101 timeslots, as
shown in Fig. 8(a) and (b). It is because both theRx- andTx-slots
appear less frequently (i.e., after 101 timeslots when SF = 101).
Such infrequent availability of transmission slots degrades the
performance of the nodes near the BR (i.e., nodes #2, #3, and
#4) when the leaf and other intermediate nodes generate a large
amount of traffic. In addition, because of the unavailability of

Fig. 8. Testbed experimental results of the proposed schemes us-
ing application data rate 4 pkts/min. (a) PDR. (b) Packet ACK ratio.
(c) Queue losses. (d) RDC. (e) End-to-end packet latency. (f) Parent
changes.

sufficient slots per slotframe using Orch-SB, nodes (specifically,
again, nodes #2, #3, and #4) need to drop their packets from their
buffer due to overflow, as shown in Fig. 8(c). Finally, it affects the
PDR and the reliability of the IoT application. However, better
performance is observed with short SF, i.e., 7 and 19 timeslots
using all scheduling schemes as all the nodes get enough slots
to transmit their packets. But short SF affects the RDC of nodes,
i.e., energy consumption of the nodes. To deal with the problems
of Orchestra due to static allocation, OST, A3, and OASA
dynamically vary the number of slots per slotframe depending on
network requirements. Therefore, all the three schemes perform
better than Orch-SB. As we use the same value for number of
zones of A3 and MAX-threshold of OASA, both A3 and OASA
show almost similar results using all the used SF in terms of all
the performance metrics. However, OASA performs better than
A3 regarding RDC and latency. It is because, using OASA, the
receiver does not allocate separate Rx slots for each neighbor in
every slotframe, unlike ALICE, OST, and A3. In addition, using
OASA, nodes do not need to wait for traffic load estimation to
allocate Rx/Tx slots per slotframe, unlike OST and A3, which
reduces the packet latency of the transmitted packet. Hence,
OASA performs better compared to OST and A3 in terms of
RDC and latency. Furthermore, because of its simplicity, OASA

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

KALITA AND GURUSAMY: ON-THE-FLY AUTONOMOUS SLOT ALLOCATION IN 6TISCH-BASED INDUSTRIAL IOT NETWORKS 9

Fig. 9. Testbed results using fixed SF equals to 19 timeslots. (a) PDR.
(b) End-to-end packet latency.

Fig. 10. Testbed results are presented at different time intervals
throughout the total experimental duration. (a) PDR. (b) End-to-end
packet latency.

requires less computational resources than A3. In brief, OASA
is easy to implement. In Fig. 9, we show testbed experimental
results by varying the packet transmission rate while keeping the
same SF equal to 19 timeslots to show how our proposed scheme
behaves with different network configurations. When the traffic
load is less, i.e., 4 pkt/min and 6 pkt/min in the network, all the
schemes perform in terms of PDR and latency. This is because
the allocated number of slots by all the schemes is sufficient
to handle such network traffic load. However, when the traffic
load increases, Orch-SB fails to handle it because of uses only
one slot per neighbor per slotframe. Even though both OST and
A3 increase slots per slotframe, that is not immediate. Therefore,
some of the packets get dropped using the estimation of the traffic
load. However, using our proposed scheme OASA, nodes do not
need to estimate traffic load, and allocation is done on-the-fly.
Therefore, OASA improves the PDR and latency compared to
all the existing schemes.

In Fig. 10, we present the results regarding PDR and packet
latency at different time intervals. To observe the behavior of the
OASA under a stable network and during network convergence,
we temporarily stopped packet transmission from all nodes after
40 min of experiments and resumed it after the next 5 min. We
use SF equal to 19 timeslots and packet transmission rate equal to
10 pkts/min. The results indicate that the existing scheme SB and
OASA remain unaffected by network convergence. Conversely,
as OST and A3 manage cells after collecting and estimating
traffic load, respectively, both took some time to allocate cells
for packet transmission after resuming. Therefore, their PDF
and latency increased during the time interval 40–50 min. Hence,

both PDR and packet latency are affected due to the convergence
time of A3 and OST. We also run experiments with a very
low traffic rate, i.e., 1 pkt/10 min, where OASA shows ≈ 41%
improvements of RDC over A3.

VI. CONCLUSION

In this work, we developed a cell scheduling scheme called
OASA to efficiently and autonomously allocate slots in real time
in 6TiSCH networks. OASA scheme can potentially improve the
reliability of 6TiSCH networks, particularly in situations where
the network traffic is highly dynamic and unpredictable. OASA
also enables a low energy consumption of the nodes when there is
less traffic load in the 6TiSCH networks. In brief, by dynamically
allocating and deallocating the communication slots on-the-fly
for both upward and downward routing, OASA can adapt to
real-time traffic demand. We implemented and tested OASA on
Contiki-NG, and FIT IoT-LAB testbed, respectively. The results
show that OASA performs better than the existing adaptive
autonomous schemes, indicating the potential advantages of
adopting OASA in practical IoT applications. In future, we aim
to enhance the adaptability of OASA by considering different re-
quirements of 6TiSCH networks and configurations of 6TiSCH
protocol stacks.

REFERENCES

[1] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and P.
Thubert, “IETF 6TiSCH: A tutorial,” IEEE Commun. Surveys Tut., vol. 22,
no. 1, pp. 595–615, First Quarter 2020.

[2] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. Pister, “6TiSCH:
Industrial performance for IPv6 Internet-of-Things networks,” Proc. IEEE,
vol. 107, no. 6, pp. 1153–1165, Jun. 2019.

[3] T. Winter et al., “RPL: IPv6 routing protocol for low-power and lossy
networks,” Internet Engineering Task Force, Wilmington, DE USA, Rep.
RFC 6550, Mar. 2012.

[4] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15.4e networks,” in Proc. IEEE 23rd Int. Symp. Pers. Indoor
Mobile Radio Commun., 2012, pp. 327–332.

[5] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. R. Dujovne,
“6TiSCH minimal scheduling function (MSF),” Internet Engineering Task
Force, Wilmington, DE USA, Rep. RFC 9033, May 2021.

[6] M. R. Palattella et al., “On-the-fly bandwidth reservation for 6TiSCH
wireless industrial networks,” IEEE Sensors J., vol. 16, no. 2, pp. 550–560,
Jan. 2016.

[7] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in Proc.
13th ACM Conf. Embedded Networked Sensor Syst., 2015, pp. 337–350.

[8] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous link-based cell
scheduling for TSCH,” in Proc. 18th Int. Conf. Info. Process. Sensor Netw.,
2019, pp. 121–132.

[9] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-demand TSCH
scheduling with traffic-awareness,” in Proc. IEEE Conf. Comp. Commun.,
2020, pp. 69–78.

[10] S. Kim, H.-S. Kim, and C.-K. Kim, “A3: Adaptive autonomous allocation
of TSCH slots,” in Proc. 20th Int. Conf. Inf. Process. Sensor Netw., 2021,
pp. 299–314.

[11] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, “An empirical survey
of autonomous scheduling methods for TSCH,” IEEE Access, vol. 8,
pp. 67147–67165, 2020.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. IEEE 29th
Annu. Int. Conf. Local Comput. Netw., 2004, pp. 455–462.

[13] C. Adjih et al., “FIT IoT-LAB: A large scale open experimental
IoT testbed,” in Proc. IEEE 2nd World Forum Internet Things, 2015,
pp. 459–464.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[14] R. Soua, P. Minet, and E. Livolant, “MODESA: An optimized multichannel
slot assignment for raw data convergecast in wireless sensor networks,” in
Proc. IEEE 31st Int. Perform. Comput. Commun. Conf., 2012, pp. 91–100.

[15] P. Thubert, M. R. Palattella, and T. Engel, “6TiSCH centralized scheduling:
When SDN meet IoT,” in Proc. IEEE Conf. Standards Commun. Netw.,
2015, pp. 42–47.

[16] M. Baddeley, R. Nejabati, G. Oikonomou, S. Gormus, M. Sooriyabandara,
and D. Simeonidou, “Isolating SDN control traffic with layer-2 slicing
in 6TiSCH industrial IoT networks,” in Proc. IEEE Conf. Netw. Funct.
Virtualization Softw. Defined Netw., 2017, pp. 247–251.

[17] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the Internet of Things,” in Proc. IEEE 14th Int. Symp. World
Wirel., Mobile Multimedia Netw, 2013, pp. 1–6.

[18] G. Micoli et al., “ASAP: A decentralized slot reservation policy for
dynamic 6TiSCH networks in industrial IoT,” in Proc. IEEE Int. Conf.
Commun. Workshops, 2019, pp. 1–6.

[19] A. Kalita and M. Khatua, “Autonomous allocation and scheduling of
minimal cell in 6TiSCH network,” IEEE Internet Things J., vol. 8, no. 15,
pp. 12242–12250, Aug. 2021.

[20] A. Kalita and M. Khatua, “Time-variant RGB model for minimal cell
allocation and scheduling in 6TiSCH networks,” IEEE Trans. Mobile
Comput., vol. 23, no. 2, pp. 1803–1814, Feb. 2024.

[21] W. Jerbi, O. Cheikhrouhou, A. Guermazi, and H. Trabelsi, “MSU-TSCH:
A mobile scheduling updated algorithm for TSCH in the Internet of
Things,” IEEE Trans. Ind. Informat., vol. 19, no. 7, pp. 7978–7985,
Jul. 2023.

[22] S. Scanzio, G. Cena, and A. Valenzano, “Enhanced energy-saving mech-
anisms in TSCH networks for the IIoT: The PRIL approach,” IEEE Trans.
Ind. Informat., vol. 19, no. 6, pp. 7445–7455, Jun. 2023.

[23] A. Darbandi and M.-K. Kim, “Autonomous scheduling for reliable trans-
missions in industrial wireless sensor networks,” Energies, vol. 16, no. 20,
2023, Art. no. 7039.

[24] F. Righetti, C. Vallati, G. Anastasi, and S. K. Das, “Analysis and improve-
ment of the on-the-fly bandwidth reservation algorithm for 6TiSCH,” in
Proc. IEEE 19th Int. Symp. World Wireless, Mobile Multimedia Netw.,
2018, pp. 1–9.

[25] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
mode of IEEE 802.15.4e (6TiSCH) configuration,” Internet Engineering
Task Force, Wilmington, DE USA, Rep. RFC 8180, May 2017.

[26] O. Gnawali and P. Levis, “The minimum rank with hysteresis objective
function,” Internet Engineering Task Force, Wilmington, DE USA, Rep.
RFC 6719, Sep. 2012.

Alakesh Kalita (Member, IEEE) received the
B.Tech. degree in computer science and en-
gineering from Assam Don Bosco University,
Guwahati, India, in 2012, the M.Tech. degree in
computer science and engineering from Assam
University, Silchar, India, in 2016, and the Ph.D.
degree in computer science and engineering
from the Indian Institute of Technology Guwa-
hati, Guwahati, India, in 2022.

He is currently a Postdoctoral Research Fel-
low with the National University of Singapore,

Singapore. His research interests include Internet of Things and
edge/cloud computing.

Dr. Kalita was the recipient of Best Project (Thesis) Award for his Ph.D.
thesis from Indian National Academy of Engineering (INAE) in 2022.

Mohan Gurusamy (Senior Member, IEEE) re-
ceived the Ph.D. degree in computer science
and engineering from the Indian Institute of
Technology Madras, Chennai, India, in 2000.

In 2000, he joined the National Univer-
sity of Singapore, Singapore, where he is
currently an Associate Professor with the De-
partment of Electrical and Computer Engineer-
ing. He has about 220 publications to his credit,
including two books and three book chapters
in the area of optical networks. His research

experience and interests are in the areas of Internet of Things, 5G net-
works, software-defined networks, network function virtualization, cloud
computing, data center networks, and optical networks.

Dr. Mohan was a TPC Co-Chair for several conferences and was an
Editor for IEEE TRANSACTIONS ON CLOUD COMPUTING and is serving
on the editorial board for Computer Networks (Elsevier) and Photonic
Network Communications (Springer).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 29,2024 at 06:39:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

